Transfert Pneumatique Phase Dense Poussé

LTransfert Pneumatique

Poussé - Phase dense

Débit: jusqu'à 100 t./h. sur 700 m.

Ce système de transfert pneumatique en phase dense poussé est adapté aux **produits très** abrasifs, à tous les débits et à toutes les températures.


et d'un coude de sortie spécial permettant d'envoyer le produit doucement dans la tuyauterie de transfert pneumatique. Ce procédé de sas pneumatique en phase dense poussé entièrement breveté permet de garantir les coudes jusqu'à deux ans contre l'abrasion et une garantie de 1.000.000 cycles de fonctionnement de la vanne avant sa révision générale. De plus, la vanne d'expédition peut être refroidie par circulation d'eau, ce qui permet d'en-

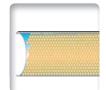
Pas de chicane, buses ou jets de fluidisation

Volume du sas

Vitesse faible et contrôlée

Vanne à casque pour une coupure dans le flux produit

Armoire de contrôle

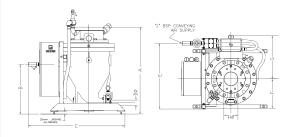

Alimentation air comprimé de transfert

Limite l'abrasion et la

> Longues distances de

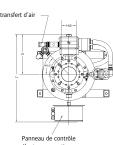
Débits très importants densité de transfert

Official representative Mactenn


Conception optimisée répondant à des besoins

• GAMME DES SAS DE TRANSFERT

MINIMAXFLO® de 15 à 85 litres



Modèles		Dimensions en mm								
	Α	В	С	D	Е	F	G	Н	J	en kg
15/4-2	718	485	803	25/40/50	725	330	405	100	20	109
30/4-2	923	510	835	40/50	730	335	428	100	20	130
30/6-2	908	510	835	40/50	730	335	428	150	20	142
60/4-2	933	545	1 081	50	734	330	484	150	20	390
60/6-2	968	555	1 081	50	734	330	484	150	20	390
85/8-3	1 114	769	1 290	80	1 028	521	600	200	40	415

MAXFLO®

de 114 à 3 500 litres

Modèles	Dimensions en mm									
	А	В	С	Е	F	G	Н	J	K	en kg
114/4-4	1 269	400	337	162	1 190	543	200	50	102	335
114/8-4	1 279	400	337	162	1 190	543	200	50	102	455
228/8-5	1 503	400	337	241	1 252	535	200	50	127	525
342/8-6	1 725	400	327	252	1 285	533	200	63	152	555
	1 807	400	327	235	1 131	521	300	63	152	753
570/12-8	2 026	400	400	219	1 127	435	300	76	203	1 157
857/12-10	2 276	480	502	305	1 153	375	300	76	254	1 501
1428/12-12	2 956	480	502	337	1 607	781	300	76	305	2 019
2125/16-12	3 680	480	495	305	1 607	781	400	101	254	2 450
2825/16-12	4 230	480	502	337	1 848	898	400	127	305	3 130
3500/16-12	4 759	480	502	337	2 247	1 092	400	153	305	3 850

LTransfert Pneumatique

Poussé - Phase dense

• GAMME DES TRANSFERTS PNEUMATIQUES - PHASE DENSE POUSSÉE

▶ MODE OPÉRATOIRE

- 1. Remplissage du sas par l'ouverture de la vanne à casque d'alimentation et la ligne d'évent (vanne à manchon)
- 2. Fin de remplissage contrôlé par temporisation. Fermeture de la vanne dans la colonne de produit. Le sas est plein à 100%
- 3. Mise en étanchéité du sas par fermeture de la ligne évent et mise en pression du siège de la vanne à casque
- 4. Montée en pression du sas et début de l'évacuation du produit
- 5. Fin du transfert détecté par un capteur de pression (seuil bas) dans le sas
- 6. Dégazage du sas par ligne d'évent et reprise du cycle

Insertion du produit dans le sas

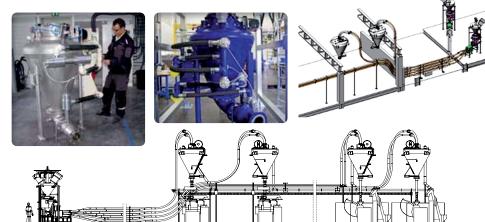
Fermeture de la vanne dans le produit = consommation d'air réduite Le sas est rempli à 100%

Introduction contrôlée de l'air

Tailles des particules : 40 µm à 4 mm. (cendres/cacahuètes) Niveau moyen de surpression : 4 bar (pression désignée 6,8 bar) Matériaux de fabrication : fonte, inox 304L, inox 316L Consommation d'air comprimé : 1 à 114 Nm³/min. Distance de transfert maximum: 700 m. Certification ATEX : zone II 1,2,3 GD (EMI inférieur à 3 mJ) Température maximum : 280°C (300°C en pic) Vitesse de transfert du produit : 1 à 5 m./s.

. La vanne produit coupe en charge le flux pour assurer un remplissage total (100%) du sas pour une consommation d'air produite très faible

- . Pour les granulés, poudres et mélanges
- . Transport lent et délicat, avec moins de consomma-
- Moins d'usure de par la faible vitesse de transport


EXEMPLE D'IMPLANTATION

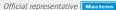
Réalisation d'un ensemble de transfert pneumatique pour l'alimentation de conditionneuses de sucre :

- 2 silos d'alimentation

Ø d'entrée : 50 à 600 mm.

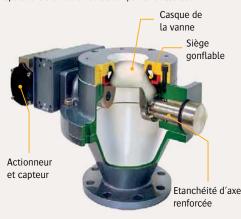
- 4 lignes de conditionnement

EXEMPLES D'INSTALLATIONS


Chargement wagon citerne

Longues distances de transfert

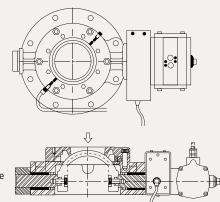
Ligne dédiée haut débit



_Transfert Pneumatique

La vanne Inflatek® est unique par sa capacité à se fermer et à assurer l'étanchéité en une seule action, à travers une colonne de matériaux statique ou mobile. Cette caractéristique garantit un remplissage complet du sas. La consommation d'air est alors fortement minimisée.

L'étanchéité est assurée par le gonflement d'un joint d'étanchéité en élastomère, ce qui empêche l'usure par érosion du siège et du joint d'étanchéité de la vanne.


La vanne Inflatek® a une capacité nominale d'un million de cycles entre chaque inspection, ce qui élimine quasiment les opérations d'entretien et les temps d'arrêt coûteux.

AVANTAGES

La vanne Inflatek® a été spécialement développée pour les sas de transfert pneumatique.

- Fermeture étanche et scellée grâce à un joint gonflant
- Fermeture étanche et scellée grâce à une colonne de produit statique ou en mouvement
- · Pression: 43 bar
- Température : 280°C
- Taille de la gamme : 50 600 mm.

D LES CARACTÉRISTIQUES

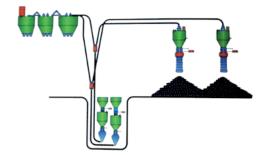
Les matériaux abrasifs : les boues abrasives, poudres, granulés en vrac et gaz chargés de poussières provoquent l'érosion du siège et la fermeture inefficace des vannes classiques. Le joint gonflant et sa fonction de compensation automatique permet de surmonter les problèmes d'usure liés à l'abrasivité des produits.

Pression différentielle : cette pression provoque généralement l'usure rapide du siège due aux particules non piégées et transportées à grande vitesse. Le joint gonflable permet ainsi de piéger efficacement les particules pour empêcher leur déplacement et ainsi l'usure prématurée des machines.

El Fermeture et étanchéité : le déplacement du dôme permet une fermeture totale dans la colonne de matière en vrac et l'action du joint gonflant permet une étanchéité parfaite.

Le joint gonflant est disponible dans différentes versions de polymères selon les gammes de matériaux allant des poussières abrasives aux produits alimentaires.

Si le produit s'écoule dans le vide ou reste statique à l'intérieur d'une colonne, la vanne est concue pour arrêter le transfert et fournir une étanchéité totale


Exemples d'Installations

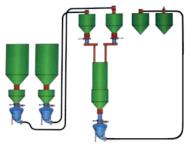
MINISTÈRE DE L'ÉNERGIE DES ÉTATS-UNIS

Objectifs:

- Réduire au minimum la dégradation granulométrique
- Faible coût d'exploitation

Amélioration d'un système de transport pneumatique existant mal conçu, utilisé pour du charbon combustible tout-venant, taille des particules 50 mm. Le système de transfert de charbon a été mis au point pour maintenir une faible vitesse de circulation du charbon combustible. La vitesse réduite, en plus de minimiser la dégradation du matériau, garantit une usure très faible, voire nulle, des conduites.

Données de base :


- Charbon combustible
- 2 sas de transfert 50 mm, à faible vitesse
- 5 points de réception
- Température ambiante
- 40 t /h

ALLEN SUGAR

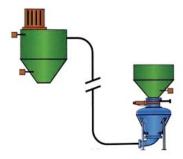
Objectifs:

- Réduire au minimum la dégradation granulométrique
- Faible coût d'exploitation

La société Allen Sugar avait besoin d'un système de manutention de pointe, pour du sucre cristallisé et du dextrose, des produits fragiles : la forme et la taille des grains de produit ne devaient subir aucun changement. Des limites de dégradation strictes avaient été fixées pour les études précontrat. Les produits ont rempli tous les objectifs avec une détérioration négligeable des cristaux de sucre ou de dex-

Données de base :

- Sucre, dextrose
- 3 sas de transfert à faible vitesse
- 2 à 5 points de réception
- Température ambiante
- 12-30 t./h.


Exemples d'Installations

BRUNNER MOND

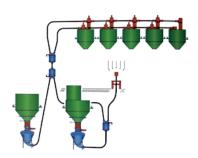
Objectifs:

- · Réduire au minimum la dégradation granulométrique
- Fiabilité du fonctionnement

Ce client fabrique du bicarbonate de soude, qui est utilisé dans une grande diversité de produits individuels et de produits de consommation. La qualité du produit dépend de l'homogénéité de la distribution granulométrique dont la teneur en particules fines doit rester strictement limitée. Pour satisfaire ces conditions, la solution envisagée a été d'utiliser un système où le matériau circule à faible vitesse.

Données de base :

- Bicarbonate de soude
- 1 sas de transfert 125 mm. à faible vitesse
- 1 point de réception
- Température ambiante
- 22 t./h.


ACE HARDWARE

Objectifs:

- · Fiabilité de fonctionnement
- Pesage de précision
- · Faible coût d'exploitation

Un contrôle de pesage thermogravimétrique par lots est présent sur chaque unité de transfert.

Les 6 matériaux de base sont introduits dans le système et font l'objet d'un pesage préliminaire puis d'un transfert dans les 6 trémies de réception.

Données de base :

- Dioxyde de titane (TiO2) et autres matériaux
- 2 sas de transfert 150 mm. à faible vitesse
- 6 points de réception
- Température ambiante
- 25 t./h.